
An Overview of The .NET
System.Random ‘Pseudo-Pseudo-RNG’

By Martin Rupp
SCIENTIFIC AND COMPUTER DEVELOPMENT SCD LTD

Any developer has probably already needed at least once to call a random function
during the development of a program or a library. Most programming languages
possess their own random generators.

Here we will study the System.Random.Rand RNG and how it behaves in terms of
randomness quality.

There are randomness tests such as DieHard or DieHarder. We do not wish to use
them to check the randomness properties of the RNGs of the aforementioned
programming languages. Instead we shall make some studies on our own.

Notions of entropy

Entropy in the context of randomness measures the frequency of occurrence of
characters, e.g “Shannon’s Entropy”.

If we use an alphabet with N symbols - say then the Shannon entropy𝑈
1
,..., 𝑈

𝑁

of a “word” is:𝐻(𝑋) 𝑋

𝐻(𝑋) =−
𝑖=0

𝑝−1

∑ 𝑝
𝑖
𝐿𝑜𝑔

2
(𝑝

𝑖
)

https://en.wikipedia.org/wiki/Diehard_tests
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Where is the probability of appearance of the symbol .𝑝
𝑖

𝑈
𝑖

Here we will compute by its frequency, e.g and is the amount of𝑝
𝑖

𝑝
𝑖

=
𝑆

𝑖

𝑆 𝑆
𝑖

occurences of the symbol while is the total amount of symbols in the word.𝑈
𝑖

𝑆

We also will consider that .0 * 𝐿𝑜𝑔
2
(0) = 0

The Shannon Entropy is a positive number which may be used to measure the
randomness of a word. A maximal value for the entropy means that the word has “best”
randomness.

𝐻(𝑋) =− 1
𝑆

𝑖=0

𝑝−1

∑ 𝑆
𝑖
𝐿𝑜𝑔

2
(𝑆

𝑖
/𝑆)

The function is concave , therefore we have the𝑓(𝑥): 𝑥 → − 𝑥𝐿𝑜𝑔
2
(𝑥)

following inequality:

1
𝑁

𝑖=0

𝑁−1

∑ 𝑓(𝑥
𝑖
) ≤ 𝑓(1

𝑁
𝑖=0

𝑁−1

∑ 𝑥
𝑖
)

Or:

− 1
𝑝

𝑖=0

𝑝−1

∑ (𝑆
𝑖
/𝑆)𝐿𝑜𝑔

2
(𝑆

𝑖
/𝑆) ≤− (1

𝑝
𝑖=0

𝑝−1

∑ 𝑆
𝑖
/𝑆) * 𝐿𝑜𝑔

2
(1

𝑝
𝑖=0

𝑝−1

∑ 𝑆
𝑖
/𝑆

)

Which leads to:

𝐻(𝑥) ≤ 𝐿𝑜𝑔
2
(𝑝)

This means that is the maximal value for the entropy of a word with p𝐿𝑜𝑔
2
(𝑝)

symbols.

As an example , if we consider an alphabet with three letters ‘A’, ‘B’ and ‘C”, we have
the following values of Shannon entropy:

Word X Shannon Entropy H(X)

ABAABBBC − (3𝐿𝑜𝑔
2
(3/8) + 4𝐿𝑜𝑔

2
(4/8) + 𝐿𝑜𝑔

2
(1/8))/8 ≃+ 1. 4056

AAAAAAAA − 8𝐿𝑜𝑔
2
(8/8)/8 = 0

AAAAAAAC − 7(𝐿𝑜𝑔
2
(7/8)/8 + 𝐿𝑜𝑔

2
(1/8)) =+ 0. 5435

We will use the Shannon entropy to check the randomness property of the studied
RNGs.Usually we shall consider the bytes as “words” created from an alphabet with 256
values ranging from 0x00 to 0XFF.

C# possess several random generation functions. The primary one is located in the

System.Random class. Others are provided by the
System.Security.Cryptography.RNGCryptoServiceProvider class or the

System.Security.Cryptography.RandomNumberGenerator. class.

Here we will focus on the first one since the other ones are considered as a “secure”
RNG and supposingly have (very) good randomness values.

Bruteforcing

The System.Random.Rand class uses an Int32 value as a seed. If the seed is broken
then of course the random generation is broken and generated numbers will be known

in advance. The amount of possible value for the seed is , which means it is232

possible to bruteforce the RNG. All that is needed is to generate all possible seeds and
search the corresponding value in the table.

The RNG generates Int32 integers through the Next() function. If we store three

samples of the generator, we need to create a table of size 32*3* bits. This is around232

412 Gbytes.

The time needed to generate a random number with a seed is small, 1,000,000
generations are done in 6177 msecs on a slow Thinkpad machine equipped with a

Celeron CPU 1007U 1.50 GHz. So the whole time needed to generate the possible232

seeds is . That is to say𝑡 = (232/106) * 6. 177 𝑠𝑒𝑐 = 26530 𝑠𝑒𝑐
approximately 7 hours.

Stopwatch sw = new Stopwatch();

sw.Start();

//Test of the Rand function

for (int i = 0; i < 1000000; i++)

{

Random r = new Random(i);

r.Next();

}

Console.Out.WriteLine("Time elapsed:"+sw.ElapsedMilliseconds);

The default built-in C# random generator isn’t obviously secure at all and can be easily
broken.

Constant values for some generated numbers

There are strange patterns in the RNG, for instance the third random number generated
will always be ‘84’ in certain conditions

for (int i = 0; i < 30; ++i)

{

int s1 = i ;

var rnd_seed = new Random(s1);

var s2 = rnd_seed.Next();

var rnd = new Random(s2);

var out1 = rnd.Next(200);

var out2 = rnd.Next(200);

var out3 = rnd.Next(200);

var out4 = rnd.Next(200);

Console.WriteLine(out1+"\t|"+out2 + "\t|" + out3 +

"\t|" + out4);

}

The output of the above program is the following:

In fact this is even worse as the third number is “almost” always the same for the
numbers generated by Next(Lim).

The following program shows this behavior:

for (int j = 0; j < 300; j++)

{

bool f = true;

var out_=0;

for (int i = 0; i < 30; ++i)

{

int s1 = i;

var rnd_seed = new Random(s1);

var s2 = rnd_seed.Next();

var rnd = new Random(s2);

var out1 = rnd.Next(j);

var out2 = rnd.Next(j);

var out3 = rnd.Next(j);

var out4 = rnd.Next(j);

if (f == true)

{

out_ = out3;

f = false;

}

if (out_ != out3)

{

Console.WriteLine("seed="+j+ " XXX");

break;

}

}

Console.WriteLine("seed=" + j + " out3=" + out_);

}

}

The output of that code shows how deeply flawed the RNG is.There is an obvious
relation between the third ‘random’ number generated and the seed…

Here it shows a relation between the third output of and j𝑟𝑛𝑑(𝑟𝑛𝑑(𝑖). 𝑛𝑒𝑥𝑡()). 𝑁𝑒𝑥𝑡(𝑗)
where is an instance of Rand generated by a seed equal to𝑟𝑛𝑑(𝑟𝑛𝑑(𝑖). 𝑛𝑒𝑥𝑡())

where i runs from 0 to 29, given the fact that this third output is a𝑟𝑛𝑑(𝑖). 𝑁𝑒𝑥𝑡()
common value to all the 29 values of the generator i.

Distribution of the values

We simply compute the distribution of the values of the RNG, we expect, of course, to
find a uniform distribution

Random r = new Random();

Int32[] values = new Int32[10000000];

Int32[] dist = new Int32[100000];

for (int i=0;i< 10000000; i++)

{

values[i] = r.Next(10000);

}

for (int j = 0; j < 10000; j++)

{

int s = 0;

for (int i = 0; i < 100000; i++)

{

if (values[i]<j)

s++;

}

dist[j] = s;

}

String csv = "";

for (int j = 0; j < 10000; j++)

{

csv = csv + j + "," + dist[j] + "\n";

}

File.WriteAllText("dist.csv", csv);

We plot the csv file using CRAN-R.

myvalues <- read.csv("C:\\tmp\\dist.csv", header=FALSE, sep=",",

as.is=TRUE)

plot(myvalues,"n","Amount <n", col="blue")

Visually the distribution looks acceptable.

Entropy study of the random byte generator

In terms of entropy, we compute the entropy of words generated by the byte generator
through the NextByte() function.

We generate a long word of around 1 Megabyte (1 million of symbols) by a
concatenation of the NextByte() values. and we compute its entropy.

We do this for a significant amount of seeds and we study the entropy distribution.

Obviously a good RNG should produce words with high entropy, “close” to the maximal

value of .𝐿𝑜𝑔
2
(256) = 8

We use the following function for computation of entropy:

private static double getEntropy(byte[] word)

{

int N = word.Length;

double H = 0;

for (int i = 0; i < 256; i++)

{

int s = 0;

for (int j = 0; j < N; j++)

{

if (word[j] == (byte)i)

s++;

}

// Console.Out.WriteLine("s="+s);

if (s > 0)

H += s * (Math.Log((double)Decimal.Divide(s, N)) / Math.Log(2));

// Console.Out.WriteLine("H=" + H);

}

return -H/N;

}

We compute the entropy of random words of 100,000 bytes generated by the RNG,

Random r = new Random();

Byte[] words = new Byte[100000];

double[] H_ = new double[1000];

for (int i = 0; i < 1000;i++)

{

r.NextBytes(words);

H_[i]=getEntropy(words);

Console.Out.WriteLine(H_[i]);

}

The computation for 100 randomly generated words produces the following Shannon
entropy values:

As we see the entropy values are all > 7.997, which is acceptable. We also get similar
results when generating the random words from a variating seed.

Conclusion: In this article, we have seen a few basic techniques to check the
randomness of a RNG. The built-in .NET System.Random.Rand RNG has no

security and must never be used for cryptography or anything involving a secret
number generation. It has an average and acceptable randomness even if
numbers - at a fixed rank - will almost always have the same values.

